
AO-AOB7 372 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE--ETC FIG 9/2
LOOP ITERATION MACRO.(U)
JUL SO S BURKE, D MOON WOOOIR-T5-C-0AAI

UNCLASSIF TEn NIT/LST ILCITMINL MjN
Eh~h~~hEEE

32

IIIII .0 ," II 112

IIII
M11 P 125 SOLUTION.4 IS A 1.6

MICROCOPY RESOLUTION TEST CHART

- "EL

LABORATORY FOR MASSACHUSETTS
INSTITUTE OF

SCOMPUTER SCIENCE TECHNOLOGY

I4IT/LcMfIN-169

IWOP ITERATICN MCRO

Glenn Burke

avid MDTIC

AUGO 41980 -

E
July 1980

This report describes research done at the LaboratorY for Computer Science of the Mssuchw
Institute of Technolog. Support for this research was proved In part by Nationd Institutes
Health grant number I P41 RR 0109604 from the Division of Resmrch Rebources. ad
Advanced Reseach Projects Agency of tho Department of Defense under office o Nevd
Reserch Contract number N00014-75-C.066.

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

DISTE rU N STATEMENT

Approved for rumic rolecxse;

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

MI~j - -Z2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

£(d btitle) S. TYPE OF REPORT &PERIOD COVERED

IMPIteat M acro ,'~J6. PERFORMING ORG. REPORT NUMBER
- - ~IT/LCSt1M-169

7 'AUTHOR(e.) C _ '4. CONTRACT OR GRANT NUMUER0.)

(.G1 ' Burke m*David j xn 62 5 NO&i4-75-C466
9. PERFORMING ORGANIZATION NAME AND ADDRESS OKUI UBR"TS

MIT/Laboratory for C aqter Science AE OKUI UUR

545 'echnoogy Square
Cantridge, NA 02139

1. CONTROLLING OFFICE NAME AND ADDRESS
1Information Systems Program 04mevPAE

Arlington, VA 22217C 2
14. MONO A YNM,*# ESS(II diftfrnt.i ~ControllinjOffice) IS. SECURITY CLASS. (of tisi report)

C Unclassif ied
-r~~sa. DECkDUSI FICATION/ DOWNGRADING

1S. DISTRIBUTION STATEMENT (44is~ Xoport)

This dcunent has been approved for public release and sale;
its distribution is unlimited

17. DISTRIBUTION STATEMENT (of 1.. abettedt miered in Block 20. liIdifforait from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necoessa aid Identify by block nufiber)

Iteration
Lisp
Macro

20. AlSgRAC T (Continue on reverse side It necessary and Identify by block number)

IMLOP is a Lisp macro which provides a progruumble iteration facility. The
same IMOP module operates compatibly in both Lisp Machine Lisp and maclimp
(PDP-l0 and Multics). LOOP was inspired by the "FM" facility of CLXSP in
InterLisp; howiever, it is not compatible and differs in severaldeal

DD I APm, 1473 E1DITION OF I Nov 411 Is 0SOLETEL

SECURITY CLASSIFICATION OF014 PAGE (Maen Date Entered)

IT

S6@Vi~ TCLAMIfCAyTW op"M PAgobw Dom

LOOP Iteration Macro

Accessionl ForlNTI S G,-AI

Ij 7 1900 DDC TAB

Unn,-ed

Glenn Burke _.-± '. ,v_Codes ,

David Moon Avail ld/or

D St pec Ial

This repoft dmcribe rmswch doe at the Lorasoq la Computw Sclene of the M uWh
Institute of Tecmology. Suppot for ths ruesed was provided I part by Nuioed Intutw of
Health grant number I P41 RR 010960 from te Dives of Imerdh Rao amd the
Advanced Rsamuh Projects Agency of th Depunmm of Dueb.. mier Cusd of Naval
Reearch Contract number N=O14-734601.

MASSACHUS'T INSTITUTE OF TlCHNOWOOY
LABORATORY POt COM TER SCICE

CAMBRIDGE MAUACH I13 02139

LOOP is a Lisp macro which provides a progressm" lalen ftit. The - LOOP
umodule operates compatibly in both Lisp Mahine Lisp end Mlhpt (IPDP-lO and Multlcs).
LOOP wa inspired by the "POR facility of CUSP in lu Lbp however, it b mot comptible
nd diffms In everd details.

Any commenus suggestiomN or criticism will be wmd. The amth cm be reched by
any of d flowing co c Pf t

ARPA Network mall to DUO-OOPOM-ML

Us, Mail to
Glenn S. Burke or David A. Moon
LboaMory for Computer Scien
545 Technology Square
Cambridg Mm. 02139

The is also a ARPA Network maI distibuion Il for b- pmalning so
LOOP. Contact d mtom a oe to be placed on it.

SAcknowldgasf

Thanks goes to Peter Szolovius who implemented FOR, the prdecesor of LOOP, and to Lowell
Hawkinuon, for helping in the desip process. The people of h Clinical Decision Making, Lisp
Machine and Knowledge B d Systems goups ll desrm mote for thir me of LOOP early in
its development, thus aiding both design end debugig empecil helpful were Jos Kulp
William Long, William Martin, and Rmeh PauL

Key Words Iteraio L. Macro

(c) Copyriht by the Mm uetb Imnstum of TcUo COmbrdA Mm 02139

AN rigsreseved

Al(Ie

LOOP lIration Macro T*b of Content

Table of Contents

1. Introduction I
2. Clauses 2

2.1 heration-Producin'jClmus. 3
2.2 Bindings 4
2.3 Entrance and Exit $
2.5 Eafcs. 5

2.7 A lusr . .oo eI. 7
2.8 Condition.iz.ton

3. LOOP Synony es 9
4. DataTyp...... 9

5. Destructuring 10

6.1 Defining Paths 13

7. Compatibility with POR . 16

S. Dependencies 17
Indelt

J

LOOP Iteration Miacro I Introduction

1. Introduotlon

LOOP is a Lisp macro which provides a programmable iteration facility. The se1 LOOP
module operates compatibly in both Lisp Machine Lisp and Mclisp (PDP-t0 and Multics).
LOOP was inspired by the *FOR* facility of CLISP in lnterLIls howeve, it Is not compatible
and differs in several details.

The general approach is that a form introduced by the word loop generates a single
program loop, into which a large variety of features can be Incorporated. The loop consists of
some initialization (prolguie) code, a body which may be executed several times, and some exit
(qpieue) code. Variables may be declared local to the loop. The features are concerned with
loop variable, deciding when to end the iteration, putting user-writte code into the loop,
returning a value from the construct, and iterating a variable through various red or virtual setsof values.

The loop form consists of a series of claus, each introduced by a keyword symbol Forms
appearing in or implied by the clauses of a loop form are classed as those to be executed as
initialization code, body code, and/or exit code, but aside from that they ae executed strictly
in the order implied by the original composition. Thus, just as in ordinary Lisp code, side-
elects may be used, and one piece of code may depend on following another for its proper
operation. This is the principal philosophy difference from lnterLisp's VOW facility.

Note that loop forms are intended to look like stylized English rather than Lisp code.
There is a notably low density of parentheses, and many of the keywords re accepted in
several synonymous forms to allow writing of more euphonious and grammaticld English. Some
find this notation verbose and distasteful, while others ind it flexible and convenient. The
former are invited to stick to do.

(defun print-elements-of-list (list-of-eleowts)
(loop for element in list-of-elements

do (print element)))

The above function prints each element in its argument, which should be a list. it reurns
nil.

(defun extract-nterestng-numbers (start-value end-value)
(loop for number from start-value to end-value

when (interesting-p numbor) collect number))

The above function takes two arguments, which dould be luxnumw and returns a list of all
the numbers in that range (inclusive) which atidy the predicat nterest-p.

Clase 2 LOOP Iteration Maco

(datun f ind-maeximsm-Olement (array)
(loop for I from 0 below (cadr (arraydins array))

maximize (funcall array I)))

Find-maxinmm-element wretrn do maximumt of dohe emnts of its arfumet a owe
dimensional array.

(datun remove (object list)
(loop for element In list

unless (equal object element) collect elemet))

Remov, is like the Lisp function deletn except that it copies tdo list rather tha
destructively splicing Out elements.

(datum find-frob (list)
(loop for element in list

whten (frobp element) return element
finally (error IFrob not found In listi list)))

This returns the Brst element of its list argisment which satisfies the predicae fro*p. If
none, is found, an error is generatd

S. Claum.

Internally. LOOP constructs a prog which Includes variable bindings, pre-itaration
(initialization) code, post-iteration (exit) code. the body of the Iteration, and stepping of
variables of iteration to their next values (which happens on every iteration afte exeuting
the body).

A clas consists of the keyword symbol ad any other Lisp form and keywords which
it das wit For exampe,

(loop for x In 1 do (print x)),
contains two clauses, 'for x in 1' and "do (print x). Certain of the part of the clause
will he described as being yumieusw, e*g. '(print x)' in thes above. An expression can be a
single Lisp form, or a series of forms implicitly collected with progas An expression is
terminated by the next following atom. which is taken to be a keyword. Thbus. syntax
allows only the first form in an expression to be atomi, but makes misspelled keywords
more easily detectable.

indings and iteration variable steppings may be performed either sequentially or in
parallel, which affects how the stepping of one iteration variabl may depend on the value
of another. The syntax for distinguishing the two will be described with the corresponding
claises When a set of things Is 'In parallel', all of the bindings produced will be performed
In parallel by a single lambda binding. Subsequent *ining will be pe Momed in"id of tha
binding environmet

LOOP Iteration Macro 3 Iteration-Producing Clauses

2.1 Iteration-Producing Clauses

These clauses all create a rule of terab., which i bound locally to the loop and takes
on a new value on each successive iteration. Note that if more than one iteration-producing
clause is used in the same loop, several variables are created which all step together through
their values when any of the Iterations terminates, the entire loop terminates. Nested Itorations
are not generated; for those, you need a second loop form in the body of the loop.

All of the iteration-producing clauses initially defined are introduced with the keyword for
(or as. which is synonomous). For clauses may be clustered into groups, the variables of
iteration of which re to be stepped in parllel, by introducing the additional clauses with and
instead of for or as. For example, the following iterates over the elements in a list, and also
has a variable for the element from the previous iteratio:

(loop for item In list and previous-Item ' "foe then item
do ...)

During the first iteration, previous-item has the value foe; in subsequent iterations, it has the
value of item from the previous iteration. Note tha this would not work if the stepping were
not performed in parallel.

The order of evaluation in iteration-producing clauses is that those expressions which are
only evaluated once are evaluated in order at the beginning of the form, during the variable-
binding phase, while those expressions which are evaluated each time around the loop are
evaluated in order in the body.

These are the iteration-producing clauses. Optional parts are enclosed in curly brackets.

for vt (daw-tjgp) in arri (by Wp2)
This iterates over each of the elements in the list W1. If the by subchaue is
present. ept2 is evaluated once on entry to the loop to supply the function to be
used to fetch successive sublists, instead of cdr.

for w on eri (by cWr2)
This is like the previous for formna except that wr Is set to successve tails of the
list instead of successive elements.

for wr (date-tpe) - opt
On each iteration, epr is evaluated and Yv Is set to the result.

for r (date-tpe) - epri then cpr2
Var is bound to rl when the loop is entered, And set to vpr2 on all succeeding
iterations.

for -r (dae-typ4) from epri (to err2) (by .prJ)
This perform numeric iteration. Vet is Initialized to perl, end on each
succeeding iteration is incremented by .prj (default 1). If the to phrase is given,
the iteration terminates when w' becomes greater than epr2. Each of the
expressions is evaluated only once, and the to and by phrw may be written in
either order. Downto my be used Instead of to, in which cm Pe Is
decremented by the step value, and the endtest Is adjused accordingly. If below is
used instead of to, or above insead of downto, the Ieraton will be tminaed

Din~ap4 LOOP Iteration Macro

before evpr2 is reached, rather than after. Note that the to variant appropriate
for the direction of stepping must be used for the endtest to be formed
correctly, iAe. the code will not work if eCyri is negative or zero. Uf no limit
specifying clause is given, then the direction of the stepping may be specified, as
being decreasing by using dowafrom instead of from. Uprma may alo be
wsed instead of from; it forces the stepping direction to be incesng. The
ba-ep. defaults to fixaum.

for w (dste-typ) being eipr and its M~A~
for var I(dae-qp.) being (each) path-

This provides a user-definable iteration facility. PM* names the manner in which
the iteration is to be performed. The ellipis idicates where variou path
dependent prepoeltion/expresm pairs may appear. See the section on Iteration
Path$ ("pe 10) for Complete dcmnals

2.2 Dindings

The with keyword may be used to estabish initial bindings, that is, variables which are
local to the loop but are only set once rather than on each iteration. The with clause
looks like.

with or]l (hr.-typ) (- irli)
(and wi2 Idate-typ) (- crr2)).

It no err is given, the vari*4l is initialized to the appropriate value for Its dat type
usually nil.

With bindings linked by and awe performed in parallel thoe not lanked are performed
sequentially. That is,

(loop with a a (foo) and b a (bar) ..

binds the variables like
((ambda (a b) ..

(too) (bar))
whereas

(loop with a a (fo) with Is* (barprime a) ...)

binds the variables like
((ambda (a)

((ambda Mb ...)

(barprime a))
(too))

All cires in with clauses are evaluated in the order they are written, upon entrance to the
loop rather then where they appear in the body. Thus, goo style, suggests that with clause
be placed fit in the, loop.

For binding more then one variable with no particular InitialIzallon one may use the

with var~ebl-lb (dlmv-tupe-UN) (and -
J~ sin

LOOP Iteration Macro SEntrance and ExiS

with (1 J It t1 t2) (fixaum fixnm f thaum)..
which is a useful special case of dsrwtWig (page 10)

2.3 Entrance and Exit

initially exprasie
This puts crprfsisoa Into the pretivu of the iteration. It Will be evaluated before
any other initialization code other than the initial bindings. For the sakeo of good
style, the initially clame should therefore be placed after any with clauses but
before the main body of the loop,

finally drsio
This puts e~Vression into the qrlogu of the loop which is evaluated when the
iteration terminates (other than by an explicit return). For stylistic reasons, them,
this clause should appear last in the loop body. Note that certain clauses may
generate code which terminates the iteration without running the epilogue code; this
behaviour is noted with those clam"e

2.4 Side Effects

do eratsion
doing eraomu

Eqiwsiox is evaluate each time through the loop.

2.5 Values

The following clauses accumulate a return value for the iteration in some manner. The
general form is

tp-f-coev~w x g#r (dwe-,jpi) (into Per)
where iqie-of-cllartin is a loolp keyword. and eqpis the thing being 'accumulated' somehow.
If no into is specified, then the accumulation will be returned when the loop terminate&. If
there is an into, then when the epilogue of the loop is reached, wm (a variable automatically
bound locally in the loop) will hae been set to the accumuolated result and may be used by the
epilogue code. In this way, a user may acumulate and somehow pmn back multiple values
from a single loop, or use them diring the loop. It is msaf to referen-ce these variAble durin
the loop. but they should not be modified until the epilogue code of the loop Is reeched. For
eumpKe

(loop for x In list
collect (too X) Into too-list
collect (bar x) into bar-list
collect (baz x) ito bat-list

finally (retern (list too-list bar-list bat-list)))
which has the same effect as

(do (00001 (baa-l000)))(o-it br-it bz1s)

(seqolist (conese tooxs) ols)

(setq bar-list (cons (bar X) bar-list)
(setq bar-list (cons (bar x) baa-list)))

collect er (into var)
collecting-

This causes the values of ayr on each iteration to be collected into a list.

Ineone e~yr (into var)
inconclng-
append
appending-

These are like collect, but the results are nconced or appendled together a
appropriate, collecting : mapcar - nconcing : mapean.

count e.Vr (into var)
counting -I

if cr evaluates non-nil, a counter is incremented. The alha-tjpe is always
fixnum.

sum qpr (daa-type) (into war)
summing-

Evaluates eyr on each iteration, and accumulates the sum of all the values.
Data-type defaults to number, which for all practical purposes is notype.

maximize epr (dwa-type (into var)
minimize-

Computes the maximum (or minimum) of qwr over all iterations. Data-tpe
defaults to number.

Not only may there be multiple acodulatis in a loop, but a single wmultin may
come from multiple place within the Mwe loop firn. -Obviously, tho types of the
collection must be compatible. Collect, oconc, and append may all be msixed a may sum
and count, and maximize and minimize. For exapKn

(loop for x in '(a b 0) for y in -((1 2) (3 4) (S 0))
collect x
append A)

0> (a 1 2 b 3 4 c 5 0)

LOOP Iteration Malcro 7 Idet

The following computes the average of the entries in the list &t-ef-frek:
(loop for x in list-of-trobs

count t Into count-var
sowm x into sum-var

finally (return (quotient sum-var count-var)))

U6 Endtests

The following clauses may be used to provide additional control over when the Itertion
gets terminated, possibly causing exit code (due to finally) to be performed and possibly
returning a value (e.g., from collect).

while emr
If &Vr evaluates to nil, the loop is exited. performing exit code (if ay) and
returning any accumulated value. The test is placed In the body of the loop where
it is written. It may appear between sequential for clauses.

until awr
Identical to while (not apr).

This may be needed for example, to step through a strangs data structure a in
(loop for concept x VPr then (superor-concept concept)

until (eq concept Caumeumeus])

* 2.7 Aggregated Boolean Tests

always VP
If epr evaluates to nil, the iteration is terminated and all returned otherwise, t
will be returned when the loop Inshs after tde epilogue code (if any.e a pecilledV with the finally clause) has been run.

never eir
This is like always (not apr).

-thereis er
If apr evaluates non~nil, thon the iteratio Is terminated and this valu is returned,
without running the epilogue code.

Condtloallatln SLOOP Iteraion Macro

These claise may be used to "conditionalie fth following claos They may precede
amy of the side-elcting or valse-producmgl clabse. such ado, collect, of Aways.

when er
if exr

If r evalutes to nil. thes followingciasewill be klpped othewise not,

unless'apr
This is equivalent to When (not eWy')).

Multiple conditionalization clauses aW appea In sequence. Nf one test fails, then any
following tests in the immediate sequence, ad the clause being wodt~a~uae skipped.

Multiple clauses may be conditionalized under the seame tes by Joining them with and,
es in

(otop for I from a to b
when (zerop (remiainder 1 3))
collect I and do (Print1)

which returns a list of all multiples of 3 from a to b iCldusiv) wd prints the.. thedy are
being collected.

Conditionals may be nestesd. For example,
(loop for i from a to b

when (zerop (remainder 1 3))
do (print 1)
and when (zerop (reminder 1 2))

collect i)
returns a list of all multiples of 6 from a to b, and prints all multiples of 3 from a to b.

Useful with the conditionallzaton clae is t return clause which causes In explicit
return of its 'agumet' as the value of the Iteton bypasng any epilogue code The is.

when rri return W2r
is equivalent to

when eqrl do (return crr)

Conditionalization of one of the wagregated boolea value clauses imply causes the tes
which would cause the iteration to terminate early not to be peifkr-ne unless the condition
succeeds. For example,

(loop for x in I
when (significant-p X)

do (print x) (Princ Ols aignificant.6)
and therein (extra-spocial-aignificant-p x))

LOOP Iteration Macro 9 LODOP Synonyms

The format of a conditionalization and following claim Is typically soding like
when evyrI keyword eVyrl

If eVyr2 is the keyword It, then a variable is generated. to hold, the value of er]. ad t
variable gets substituted for eaVp2. Thus. the composition

when e.V, return it
is equivalent to the clause

thereis er
and one may collect all non-null values in an iteration by saying

when eprmein collect it
If multiple clauses wre joined with and, the it keyword may only be toed in the fist If
multiple whens. unless. and/or ifs occur in sequenc the value substtued for It will be
that of the lost test performed.

8. LOOP Synonyms

define-loop-macro Macro
(dot ins- loop-mcro keyword)

may be used to make keyword, a loop keyword (such s for). into a LISP macto whic
may introduce a loop form. For example, afe evaluating

(dot Ino-loop-mcro for),
one may now write an iteration as

(for I from 1 below a do .

4. Data Type.

Ini many of the clause descriptions, an optional ~A-Wjp Is shown A di-W In this
sense is an atomic symbol, and is recognizable a such by LOOP. LOOP intefaces to a module
which defines how declarations and initialization we to be performed, for various data types.
However, it recognizes several types specially so that tha module nee not be preomn in order
for them to be used:

'1 fixnum
An implementation-dependent limited range Intg.

flonm
An implementation-dependent limited precision loating point number.

integer
Any integer (no range restriction).

Any number.
notype

Unspecifie type (ie. anything elseo

Dtructuring to LOOP Iteations Macro

5. uemue.uring

Dsrwruring providas one with the ability to Ismultaneoul' assign or bind multiple
variables to components of some data structure Typically this Is used with list structure

(which is the only mode currently supported). For example*
hatheet ooin . toa) a'anbarob 0) ~nyeqiedstutrn

spotwhen ne of tse paottenossple -o a va a o(c.LO nyrqie.s aditin h
bindinghe n of im pattern oac nsni is sotreed ttit rnequaire specal spo the
thisdnfo allos ter oacntnmi oVse o t eurss pca upr oo

tialwsithe (ase

to work without destructuring support code.

One may specify the data types of the components of a pattern by using a corresponding
pattern of the data type keywords in place of a single data type keywoid. This synta
remains unambiguous because wherever a data type keyword Is possble a loop keyword is
the only other possibility. Thus. if one wants to do

(loop for x in 1
as I f ixnum a (car x)

and j flxnum a (cadr x)
and k fixnum a (cddr x)

. . .)

and no reference to x is needed, one may instead write
<I To (loop for (I J.k) (fixnun fixeum . flxnu.) In 1 ...)

Toallow sme abbreviation of the data type pattern, en atomic data type component of the
pattern is considered to state that all components of the corresponding part of the variable
pattern wre of that type. That Is% the previous form could be written as

(loop for (I J . k) fixtitm In 1 ...)

in
(loop with (a b c) and (I j k) fixnum ...)

which binds a. b, and cto nil and i, j andkItto Ifor use a tmporarin during the
iteration, and declares I, J, and kt to be flxnums for the beneft of the compiler.

(defun map-over-properties, (Vi symbol)
(loop for (propname propsvel) en (plist symbol) by '*cddr

do (funcall fn symbol propnems prepval)))

See also section 8.page 17, which discusses support code needed In various
Insplementations.

LOOP Iteration Macro II Itraton Ps"h

6. Iteration Paths

Iteration paths provid, a mechanism for user exitension of Itrlo-odcn clauses The1
interface is constrained so that the definition of a path need not depend on much of the
internals of LOOP. In general, a path iteration has one of the form

for Per (data-type) being aprO and Its pMthume

for par I(Sua-typ) be Ing (each) pothnoie of upril

The difference between the two is this: in the first, ver will take on the value of april the first
time through the loop; but in the second, it will be the flrst step along the path'. Pth.... is
an atomic symbol which is defined as a loop path function. The usage and defaulting of data-
type is up to the path function. Any number of preposition/expresson pairs may be presnt;~
the prepositions allowable for any particular path are defined by that path. The of preposition
has special meaning in that it specifies the starting point of the Patk thus, the first variation
shown implicitly uses an of aprO *prepositional phroWe" To enhance readability, pothnames are
usually defined in both the singular and plural formes To satisf the anhopomflorphc among
you, his, her, or their may be substituted for the Its keyword. goetityis, not condoned.

One pre-defined path is cars; it simply itersas over successive cans of its starting argument,
terminating after an atom is reached. For example,

(loop for x being cars of '((a b) c) cellect x)
a) ((a b) a)

(loop for x being '((a b) c) and its cars collect x)
a) (((a b) c) (a b) a)

The above forms wre equivalent to
(loop for x a (car '((a b) c)) then (car x)

collect x
until (atom x))

and
(loop for x a '((a b) c) then (car x)

collect x
until (atom X))

respectively. (Note that the atom check following the body of tis loop is part of fth
definition of the cars path, andIs not aproperty o(ateIn geraL)

Iteration PWIS 12 LOOP Iteation Macro

By special dispensstioi if a pumu, is not reond, than the attachments
path will be invoked upon a syntactic trnsormation of tde original ImpuL This -am
derives historically front its orWgna usqe, In XIJIS Eeatulyt e doeSo fraMmen

for vw being e-P of cW..
is taken n if it WKre

for vw being attachmets In a-v-O of or ...
and

fror rbeing cr and Its a-v .
is taken W if it weI

for wr being Wr and its attachments to -- *
Thus% this -undefined patinam hook only works if the attacment path h defd. Note

loo-attachment-traufonner Vedsok
The value of this b afunction of one argument which will be called on e- to.
transform it into a-v-*. If It is nl, than a quote bs listed wound the expresslon
effectively causin the special attachmets synt to be an unevauad form of the
attachments path This is initialy nil excelit In am LMS avlroamemt In whichi

* ~cume it is a function whic sdmpl returnav

LOOP luIleo mum 13 Ddh aft

Li Delllui Padhs

TIU .. ti.. will probily be of lmumu emi on WWWS. hm im I.2f dee Shhown PA

For d parposm of discuuhmm. do posed tumphls fm of h o 1msM be h muse to

0lat "I IB bndiv
(pros 0

next-loop

pi- kd-#'- 2

pue-bo-urve-I

(so mmt-leap)

When more.d uoneS for ckme bs groue bogeshsr wM W ado Ns edmad $UP -O
araugd to occur topdohr in p NObi Ssquentdly --m-gd I (cum - id*l euduis
and mep sto occur one elser mbew a sbw isth do upboL

A function to genera.t cad. for a p@& magh besrd to Deep wkb do &ft-Ioep
path function:

(uuyxnuwsr- pdIWMm) Wm pq

may beeiwa ym r a IM of bI " AbadIU'wd do
conventions domtiod beow.

* ~The junior wIll be cad withd ib of ulWOugMeMl

The sa of ibm pab wM k .udoib p* ftnui1e to boeh

The lurado v~di.

Tlw d&a q"p suppNie wlibib do s -1,~u 0 r u611 a m FA9udOWJ

Defining Paft 14 LOOP ItWallo Macro

This Is a list with entries of the form (prqVside CrAM10), in the order in
which they were collected. This may also include some suplid Implicitly (.&
of phrues, and In phrases for attachment relationig the ordering will show the
order of evaluation which should be followed for the expresuions.

This is t if veriehk should hav the starting point of the path an its value on the
first iteration, nil otherwise.

This is the list of allowable prepositions declared for the pathnmoe that causied
the path function to be invoked. It and dam. (immsediately below) my be used
by the path function such that a single function may handle similar paths.

dwe This is the list of -data declared for the pathname tha caused the path function
to be invoked. It may, for instance, contain a canonicalized pathuame, or a sat
of functions or toap to aid the pat function in determining what to do. In thi
way, the same path function may be able to handle dileren pad..

The handler should return a list with the following elements:

vWebk-bindugs
Thisisalist of variables which needto bebound. The entiesin itmay be of
the form wrie (veuib~e e.pre&sien or (eieble cwdsi data-tj p.) Note
that it is the responsibility of the handler to make sure, the iteration variable gets
bound. All of these variables will be bound in parallek thus, Vfinitializationiof
one depends on others it should be done with a Meq in the prbu-je

This is a list of form which should be included in the loop proloue,

This is a single form.

This ushould be an alternating list of variables and expressions to s*ep them They
will be suepped in parallel. (This is like the arguments to aeq; In fact, It will
be used a the arguments to p"et.)

Like pre-o-exat, but done after the #eE, jus b"fr starting the mext
iteration.

Like pre-beio-aq.
If anyone fids that they need to modify the mWN body or she epilogue code. we would
like to hear about IL.

A qualification is in order with respectso slepping. In order so mak parallel stepping
wok properly, l"o st be ab lo coerce the smoppinmg code for dileen for clause to

sot In prall Thus, the canonical -lv for stepin to osca Is In do -1-y the d

LOOP Iteratio Macro Is Debing P.M

pre-bdy-steps is mainly useful whe the iaion variable nee& to be art to some function of
whatever is actually being iteraed over. For empldo he LOOP clause

for vr in AIN
effectively returns the following eosemb for th template (where a n redly a gesymed
variable name)

,reriek-hiwhgs
*(W (tm 1t))

Pofwlgs-ferrn
nil

(null tows)
pre-hady-uqps

(MV (car tm))

(rean (cdr ten))

oop-teqal toe~ smW-.-#ri
This is the LOOP token comparison function. Ta is my Lisp obect xWhe-.r-ri
is the keyword it is to be compared against. It return. t if they represent te se
token, comparing in a manner apopfiae for the ImplemenatIon in cermtn
implementations Ioop-teral may be a macro.

Compatibility with FOR 16 LOOP IWtion Macro

7. CompatibIlity with FOR

LOOP is not truly compatible with FOR (a similar Maclisp iteration package) The
reason for this s tht LOOP ha cetin ides" about how it should handle such things a
order of evaluation and repeated evaluation, which am quite different from FOR's simpler
template approach. Many of the keywords, and hopefully all of the functionality, have been
preserved. In many caes, code written with FOR will work with LOOP, although It
sometimes may not behave Identically. For convenience, hare is a (non-ehmbstive) summay
of the major differences.

One major difference is that LOOP s more fastidious about how It orders the
assignments and endtes. Take. for example

(loop for n in list as z u (8n n) collect z)
In FOR, a would be assigned to the car of the list, then z would be stepped and then the
null check would be made on the iteration list. This mean that on the ls iteration & will
be assigned to (* nil nil), which might cause some consternation to the Lisp interpreter. In
LOOP, first a ml chock is mae on the hen n is t to the ear of thelist, then z is
stopped.

Explicit endtests (while and until) ae placed *where they appe" in the iteration
sequence. This obviates the repeat-while and repeat-until keywords of FOR. For
example, the FOR construct

(for x in 1 collect x repeat-while ((x 259.))
may be replaced by the LOOP construct

(loop for x In 1 collect x while ((x 259.))
Note that in the FOR cue, the ordering of the clam typically does not mte, but In the
LOOP case it typically does. Thus, the ordering in

(loop for data a (generate-some-date)
collect (f data)

while (test data))
i cuses the result to be a list with at least one eems t.

LOOP attempts to suppress repeaW evaluation where posible. Which expressions get
repeatedly evaluated is documented with the corresponding clauses. One splcaiant example
where LOOP and FOR differ is in the cas

(loop for I from 0 to apreaie ...)
in which FOR evaluates ayrssn at every iteration, whereas LOOP am the value at the
start of the Iteration.

It should be noted that the conditionliztion claus (when, until. and if) affect only
the following clause rather than the whole of the 'bodf of the ration, as would be the
case in FOR.

Because it is difficult for It to work in all cam the graflig clams hm been elimhnted.
Its effect may be achieved, however, by tacking

and Pw idduI-War then w--be-edl
ater the for clause which sup m soe-nWdal.

LOOP Iteration Macro 17 Dependencie

6. Dependenoes

The LOOP packge may require the existence of other routines In some implementations.
For efficiency reasons, LOOP avoids producing let in the code it generates unless it is
necessary for destructuring bindings.

In the PDP-10 Matlisp implementation, LOOP uses (error to generate error mesages;
(error is part of the FORMAT package, and b assumed to be sutolodabe from there. Let,
which is used to produce destructuring bhnings. and the destructuring version of aeq called
desetq, which is used only when destructuring is used, are both autoloaddie. The perallel
setq" mechanism is simulated so that psetq is not needed. Macro memolzing is performed using
the same facilities which demacro uses, and ae autoloedble (and typically present in most
environments).

In Multics Maclisp, LOOP does not presently call (error, which does not exist. There is a
let macro available with destructuring capability; it is non-tandard (not pert of the Multics Lisp
system) - for further information contact the authors Currently, macro momoizin is
performed by rplaca/rplacd splicing unconditionally.

In Lisp Machine lisp, (error is used to pnerate errors This is part of the basic Lisp
Machine environment. At this time, destructuring support is not part of the boeic environment,
although it is available. contact either the author or the Lisp Machine group if you need this
Macro memoizing is performed using displce, with the me efect a In Multics Maclils

Ii

1

A

lndex Is LOOP Iration Mao

Index

always keyword 7
append keywo 6
appending kwd 6
collect kcr ord * 6
collecting kq.uord . 6
conditionalizingclme*) 0
count er ord .*...... 6
counting kqmsrd 6
data type keyworc .r.o 9
define-loop-macro . 9
delne-loop-poh . 1do kemlw

doing keynord* ** . 3

Inally A rd . 5
for kepooud . 3.4if RA u 9 $

ioop-tqual. 15

maximize kerrd 6
minimize k rd. 999.9. 99.*.*.. 6
multiple accumulations 6
nconc ke wrd 6
nconcing keyrd 6
never A€uwrd 7
order of-evaluation initeration cls 3
parallel vs., sequential iwration seiung3
sequential vs perallel blnding md initidllaion 2

* sum Aqis.d . * * 6
summing keywwd 6
terminating theiteration 7
tereis keyw d 7
unless key 9 . a I
until k e rd . 7
varible bindinp 4
when Oeww I
whI Aq,,wd . 7wMt k eg, w 4

OFFICIAL DISTRI BfION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 12 copies

Office of Naval Research Office of Naval Research
Information Systems Program Code 455
Code 437 Arlington, VA 22217
Arlington, VA 22217 1 copy

2 copies
Dr. A. L. Slafkosky

Office of Naval Research Scientific Advisor
Branch Office/Boston Cuwndant of the Marine Corps
Building 114, Section D (Code RD-I)
666 Summer Street Washington, D. C. 20380
Boston, MA 02210 1 copy

1 copy
Office of Naval Research

Office of Naval Research Code 458
Branch Offie/Chicago Arlington, VA 22217
536 South Clark Street 1 copy
Chicago, IL 60605

1 copy Naval Ocean Systems Center, Code 91
Headquarters-Ccmputer Sciences &

Office of Naval Research Sinulation Department
Branch Office/Pasadena San Diego, CA 92152
1030 East Green Street Mr. Lloyd z. maudlin
Pasadena, CA 91106 1 copy

1 Mr. E. H. Gleissner

New York Area Naval Ship Research & Development Center
715 Broadway - 5th floor. omputation & Math Departnent
New York, N. Y. 10003 Bethesda, MD 20084

1 copy 1 copy

Naval Research Laboratory Captain Grace M. Hoer, USNR
Technical Information Division NAVDAC-OOH
Code 2627 Department of the Navy
Washington, D. C. 20375 Washingon, D. C. 20374

6 copies 1 copy

Assistant Chief for Technology
Office of Naval Research
Code 200
Arlington, VA 22217

1 copy

